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Motivation of the study
In the literature dealing with stochastic modelling of degradation, two main forms of variability are usually distinguished: the “temporal variability” and the “unit to unit variability”.
• The first form of uncertainty is associated with the progression of the degradation over time
• The second one describes the differences (i.e., heterogeneity) in the evolution of the degradation paths of different units caused by factors whose values vary from unit to unit.
In this work we consider a third form of uncertainty that is associated with the presence of measurement errors, an experimental situation that is often encountered in the practice, especially when data are collected through in-service and/or non-destructive inspections. The temporal variability is modeled by using a gamma process. The presence of unit to unit variability is accounted 
for by assuming that the scale parameter of the gamma process varies randomly from unit to unit. The presence of measurement error is tackled by using the hidden Markov theory.
Computations are developed using a particle filter  method. 
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The perturbed gamma process with random effect
The perturbed model has been formulated as 𝑍 𝑡 = 𝑊 𝑡 + 𝜀(𝑡), where 𝑊 𝑡 is the actual (hidden) degradation level, 𝜀(𝑡) is the measurement 
error, and 𝑍 𝑡 is the observed (perturbed) degradation level.
Following the standard hidden Markov process theory, it is assumed that for any 𝜈 > 1, any 𝑗 = 1, … , 𝑛 and any set of times 𝑡!, … , 𝑡" the
measurement error 𝜀 𝑡# given 𝑊 𝑡# = 𝑤# is conditionally independent both on 𝜀 𝑡! , … , 𝜀 𝑡#$! , 𝜀 𝑡#%! , … , 𝜀(𝑡") and
𝑊 𝑡! , … ,𝑊 𝑡#$! ,𝑊 𝑡#%! , … ,𝑊 𝑡"
The hidden degradation process  𝑊 𝑡 ; 𝑡 ≥ 0 is assumed to be a non-homogeneous gamma process with random effect [Lawless and Crowder 
(2004), Giorgio et al. (2019)]. 
The pdf of the increment ∆𝑊 𝑡!, 𝑡& = 𝑊 𝑡& −𝑊 𝑡! is:
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Where Γ ⋅ denotes the complete gamma function, 𝜂 𝑡 is the age function, which in this paper is assumed to be 𝜂 𝑡 = )
0
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As in [Giorgio et al. (2019)], it is assumed that the measurement error 𝜀(𝑡) depends in stochastic sense on the actual degradation level 𝑊 𝑡 and 
that, given 𝑊 𝑡 = 𝑤 its conditional pdf is:
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Model Calibration
Model parameters have been estimated from degradation data collected via periodic inspections, considering that a random effect exists.
Estimates have been obtained by maximizing the following likelihood function 𝐿 𝜽, 𝒛 :
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where 𝑡6,# (𝑖 = 1, … ,𝑚; 𝑗 = 1,… , 𝑛; 𝑛6 ≥ 1) indicates the time at which the 𝑗 − 𝑡ℎ inspection on the unit 𝑖 is performed, 𝒁6,# = 𝑍6,!, … , 𝑍6,# is the 
set of perturbed measurements made on the unit 𝑖 up to the time 𝑡6,#, 𝒛6,# = 𝑧6,!, … , 𝑧6,# denotes its realizations, 𝜽 denotes the vector of model 
parameters, 𝑡6,< = 0, and 𝒁6,< is an empty set.
Under the proposed perturbed model, the pdf in the likelihood function can be computed, for any 𝑖 = 1, … ,𝑚 and 𝑗 = 1, … , 𝑛6 via the following 
recursive equations:
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Where 𝑊 𝑖, 𝑗 denotes the actual degradation level of the unit 𝑖 at the time 𝑡6,#, ∆𝑊6,# = 𝑊6,# −𝑊6,#$! denotes the degradation increment of the unit 𝑖
in the time interval (𝑡6,#$!, 𝑡6,#), 𝑤6,# denotes the (unobservable) realization of 𝑊6,# and ∆𝑤6,# = 𝑤6,# − 𝑤6,#$! the unobservable realization of ∆𝑊6,#.

Data consist of the observed degradation (in terms of variation ratio of
luminous power) of 𝑚 = 25 GsAs/GaAs IRLEDs operating at 170 mA, each
with 𝑛6 = 11 degradation measurement, performed at the same times for all
the units. Here, an IRLED is assumed to fail when its degradation level
passes the threshold value 𝑤@ = 0.35.
The considered IRLEDs data present two important features: (a) the
presence of negative increments, (b) empirical evidence of a positive
correlation between increments (e. g., consider 8 out of 10 empirical
estimates of the correlation coefficient between consecutive increments are
positive). The first feature inhibits the use of a gamma process and/or other
degradation processes with intrinsically non-negative increments, the second
one suggests the (possible) presence of random effect.

In this table, the proposed model
(indicated as M3) is compared
with a model that neglects the
presence of the random effect
(indicated as M4).
The table contains the maximum
likelihood estimates of models
parameters, the values of Akaike
information criterion indexes
(AIC) and the values of the log-
likelihood function computed at
the MLEs.
The AIC values give evidence that
according to the Akaike
information Criterion the model
M3 should be preferred to the
model M4.

Model #

M
LE

M3 M4

!𝜆 / 1.37

'𝑎 2.39 /

,𝑏 6.85 /

𝑐̂ 7.37 14.55

!𝑑 0.62 0.58

'𝛾 147.9 156.6

AIC 710.6 775.2

𝑙𝑛𝐿(;𝜽, 𝒛) −350.3 −383.6

Application example Results

The main purpose of the application is to analyze the
repercussion of neglecting the presence of the random
effect on the estimates of the cumulative distribution of
the remaining useful life of the considered degrading
units.
Figure 2 displays the MLEs of the complementary Cdf of
RUL(t) (i.e., the measurement-based residual reliability) of
IRLEDs #6, #14, and #25, at the last inspection time
t=2550. Solid lines are MLEs obtained under the model
M3, dotted lines are those obtained under the model M4.
The figure shows that neglecting the presence of the
random effect leads to underestimate the complementary
Cdf of RUL(2550) in the case of the IRLED #14, whose
degradation measurements (see Figure 3) are all below the
MLE of E[Z(t)]=E[W(t)] and to overestimate it in the case
of the IRLED #25, whose degradation measurements are
all above the MLE of E[Z(t)]. The figure also shows that,
in the case of the IRLED #6, whose degradation
measurements are close to the MLE of E[Z(t)], the
estimates of complementary Cdf of RUL(2550) obtained
under the two considered models are very similar.

Remaining useful life 
It is assumed that a unit (conventionally) fails when its degradation level exceeds a threshold limit 𝑤@ and that failure is not self-announcing. Under 
these assumptions, the remaining useful life 𝑅𝑈𝐿 𝑡 is defined as the non-negative random variable which measures the remaining time from 𝑡 up to 
the degradation process 𝑊 𝑡 ; 𝑡 ≥ 0 first passes 𝑤@. In the case {𝑊 𝑡 ; 𝑡 ≥ 0} passes 𝑤@ at or before 𝑡, 𝑅𝑈𝐿 𝑡 = 0. 
Under this assumption, the complementary Cdf of 𝑅𝑈𝐿(𝑡) is defined as the conditional probability that the unit fails within 𝑡 + 𝜏, given 𝒁) = 𝒛). 
Hence, since {𝑊 𝑡 ; 𝑡 ≥ 0} is a monotonically increasing process, the complementary Cdf of 𝑅𝑈𝐿(𝑡) is given by:
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Where 𝑊)%D is the actual degradation level 𝑡 + 𝜏 and 𝑊) is the actual degradation level at 𝑡.The complementary Cdf of the 𝑅𝑈𝐿(𝑡) is here 
alternatively referred to as (perturbed measurement based) residual reliability.

Computational details
Unfortunately, due to the presence of measurement error, neither the likelihood function nor the 𝑅𝑈𝐿(𝑡) can be expressed in closed form. Thus, a 
numerical method must be used. In this paper, we used a particle filter method, which allows computing the required functions by using a sequential 
Monte Carlo based approach, once the vector of model parameters 𝜽 is set to a plausible value.

Figure 1 – Observed degradation paths of GaAs/GaAs IRLEDs 
and empirical estimates of 𝐸 𝑍 𝑡 at the measurement times.

Figure 3 - Degradation measurements of IRLEDs #6, #14, 
and #25 and MLE of E[Z(t)] obtained under the model M3.

Figure 2 - MLEs of the complementary Cdf of RUL(2550) of 
IRLEDs units #6, #14, and #25 under the models M3 and M4.


